Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514793

RESUMO

The soft tissues of residual limb amputees are subject to large volume fluctuations over the course of a day. Volume fluctuations in residual limbs can lead to local pressure marks, causing discomfort, pain and rejection of prostheses. Existing methods for measuring interface stress encounter several limitations. A major problem is that the measurement instrumentation is applied in the sensitive interface between the prosthesis and residual limb. This paper presents the principle investigation of a non-intrusive technique to evaluate the fit of orthopaedic prosthesis sockets in transfemoral amputees based on experimentally obtained vibrational data. The proposed approach is based on changes in the dynamical behaviour detectable at the outer surface of prostheses; thus, the described interface is not affected. Based on the experimental investigations shown and the derived results, it can be concluded that structural dynamic measurements are a promising non-intrusive technique to evaluate the fit of orthopaedic prosthesis sockets in transfemoral amputee patients. The obtained resonance frequency changes of 2% are a good indicator of successful applicabilityas these changes can be detected without the need for complex measurement devices.


Assuntos
Amputados , Membros Artificiais , Ortopedia , Humanos , Desenho de Prótese , Implantação de Prótese , Cotos de Amputação
2.
JMIR Med Inform ; 11: e41614, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705946

RESUMO

BACKGROUND: The electronic health record (EHR) targets systematized collection of patient-specific, electronically stored health data. The EHR is an evolving concept driven by ongoing developments and open or unclear legal issues concerning medical technologies, cross-domain data integration, and unclear access roles. Consequently, an interdisciplinary discourse based on representative pilot scenarios is required to connect previously unconnected domains. OBJECTIVE: We address cross-domain data integration including access control using the specific example of a unique device identification (UDI)-expanded hip implant. In fact, the integration of technical focus data into the hospital information system (HIS) is considered based on surgically relevant information. Moreover, the acquisition of social focus data based on mobile health (mHealth) is addressed, covering data integration and networking with therapeutic intervention and acute diagnostics data. METHODS: In addition to the additive manufacturing of a hip implant with the integration of a UDI, we built a database that combines database technology and a wrapper layer known from extract, transform, load systems and brings it into a SQL database, WEB application programming interface (API) layer (back end), interface layer (rest API), and front end. It also provides semantic integration through connection mechanisms between data elements. RESULTS: A hip implant is approached by design, production, and verification while linking operation-relevant specifics like implant-bone fit by merging patient-specific image material (computed tomography, magnetic resonance imaging, or a biomodel) and the digital implant twin for well-founded selection pairing. This decision-facilitating linkage, which improves surgical planning, relates to patient-specific postoperative influencing factors during the healing phase. A unique product identification approach is presented, allowing a postoperative read-out with state-of-the-art hospital technology while enabling future access scenarios for patient and implant data. The latter was considered from the manufacturing perspective using the process manufacturing chain for a (patient-specific) implant to identify quality-relevant data for later access. In addition, sensor concepts were identified to use to monitor the patient-implant interaction during the healing phase using wearables, for example. A data aggregation and integration concept for heterogeneous data sources from the considered focus domains is also presented. Finally, a hierarchical data access concept is shown, protecting sensitive patient data from misuse using existing scenarios. CONCLUSIONS: Personalized medicine requires cross-domain linkage of data, which, in turn, require an appropriate data infrastructure and adequate hierarchical data access solutions in a shared and federated data space. The hip implant is used as an example for the usefulness of cross-domain data linkage since it bundles social, medical, and technical aspects of the implantation. It is necessary to open existing databases using interfaces for secure integration of data from end devices and to assure availability through suitable access models while guaranteeing long-term, independent data persistence. A suitable strategy requires the combination of technical solutions from the areas of identity and trust, federated data storage, cryptographic procedures, and software engineering as well as organizational changes.

3.
Sensors (Basel) ; 21(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073104

RESUMO

The wear comfort of a prosthesis is of great importance for amputee patients. The wear comfort can be affected by changes in the interface between the residual limb and prosthesis socket, which can be caused by time-dependent volume fluctuations of the tissue, leading to unwanted local pressure marks. The basis to ensure time-independent wear comfort of a prosthesis is to identify these changes. Common techniques for identifying these variations have a negative impact on the sensitive interface between the residual limb and prosthesis. The following paper contains a proof of concept for the detection of local pressure marks without affecting the described interface using structural dynamics measurements, exemplarily shown at a prosthetic socket for transfemoral amputees in a test bench scenario. The dynamical behaviour of the investigated system is analysed in the form of frequency response functions acquired for different pressure locations and preloads using an impact hammer for excitation and a triaxial acceleration sensor. The frequency response functions show major changes for the various boundary conditions with respect to their frequency-dependent compositions. The results demonstrate how the utilised method enables the identification of changes in local pressure marks regarding the variation of position and magnitude.


Assuntos
Amputados , Membros Artificiais , Cotos de Amputação , Extremidades , Humanos , Desenho de Prótese , Implantação de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...